การสะท้อนบนระนาบเป็นการแปลงทางเรขาคณิตที่มีเส้นตรง l ที่ตรึงเส้นหนึ่งเป็นเส้นสะท้อน แต่ละจุด P บนระนาบจะมีจุด P' เป็นภาพที่ได้จากการสะท้อนจุด P โดยที่
1. ถ้าจุด P ไม่อยู่บนเส้นตรง l แล้วเส้นตรง l จะแบ่งครึ่งและตั้งฉากกับ PP'รูปเรขาคณิตที่สามารถหารอยพับและพับรูปทั้งสองข้างของรอยพับให้ทับกันสนิทได้เรียกว่า รูปสมมาตรบนเส้น และเรียกรอยพับนี้ว่า แกนสมมาตร รูปสมมาตรบนเส้นแต่ละรูปอาจมีจำนวนแกนสมมาตรไม่เท่ากัน
เส้นสะท้อน (แกนสมมาตร) จะแบ่งครึ่งและตั้งฉากกับส่วนของเส้นตรงที่เชื่อมระหว่างจุดแต่ละจุดบนรูปต้นแบบกับจุดแต่ละจุดบนรูปสะท้อนที่สมนัยกัน
สรุปได้ว่ารูปที่เกิดจาการสะท้อนก็คือรูปสมมาตรบนเส้น โดยมีเส้นสะท้อนคือแกนสมมาตรนั่นเองถ้าเส้นสะท้อนเป็นแกน Y พิกัดของภาพที่เกิดจากการสะท้อน คือการเปลี่ยนเครื่องหมายของสมาชิกตัวหน้าเป็นเครื่องหมายตรงข้ามทุกจุดของรูปต้นแบบ ส่วนสมาชิกตัวหลังให้คงเดิมไว้
ถ้าเส้นสะท้อนเป็นแกน X พิกัดของภาพที่เกิดจากการสะท้อน คือการเปลี่ยนเครื่องหมายของสมาชิกตัวหลังเป็นเครื่องหมายตรงข้ามทุกจุดของรูปต้นแบบ ส่วนสมาชิกตัวหน้าให้คงเดิมไว้
ถ้าเส้นสะท้อนขนานแกน X หรือแกน Y ให้นับช่องตารางหาระยะระหว่างจุดที่กำหนดให้กับเส้นสะท้อนซึ่งภาพของจุดนั้นจะอยู่ห่างจากเส้นสะท้อนเป็นระยะที่เท่ากันกับระยะที่นับได้เมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด
ถ้าเส้นสะท้อนไม่ขนานแกน X และไม่ขนานกับแกน Y แต่เป็นเส้นในแนวทแยง ให้ลากเส้นตรงผ่านจุดที่กำหนดให้และตั้งฉากกับเส้นสะท้อน ภาพของจุดที่กำหนดให้จะอยู่บนเส้นตั้งฉากที่สร้างขึ้นและอยู่ห่างจากเส้นสะท้อนเป็นระยะเท่ากันกับจุดที่กำหนดให้อยู่ห่างจากเส้นสะท้อน เมื่อได้ภาพของจุดนั้นแล้วจึงหาพิกัด